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Abstract. We study the formal basis behind Negative Correlation (NC)
Learning, an ensemble technique developed in the evolutionary compu-
tation literature. We show that by removing an assumption made in the
original work, NC can be shown to be a derivative technique of the Am-
biguity decomposition by Krogh and Vedelsby. From this formalisation,
we calculate parameter bounds, and show significant improvements in
empirical tests. We hypothesize that the reason for its success lies in
rescaling an estimate of ensemble covariance; then show that during this
rescaling, NC varies smoothly between a single neural network and an
ensemble system. Finally we unify several other works in the literature,
all of which have exploited the Ambiguity decomposition in some way,
and term them the Ambiguity Family.

1 Introduction

Error ‘diversity’ is now widely recognised as a desirable characteristic in multiple
classifier systems. Though still an ill-defined concept, it is related to statistical
correlation, and a number of methods designed to encourage low correlation
between classifiers have matured over the last decade. Our framework for this
investigation hinges on regarding these methods as dichotomous: explicit and
implicit diversity methods. Explicit methods measure diversity (correlation) in
some manner and directly incorporate this knowledge into the construction or
combination of the estimators; for example Input Decimation Ensembles [10],
which measure correlation between features before assigning them to particular
networks. Implicit methods utilise purely stochastic perturbations to encourage
diversity; for example, Bagging or similar data resampling techniques. In this
paper we are concerned with explicit methods, in particular those which share
a common root in the Ambiguity decomposition from [4], widely recognised as
one of the most important theoretical results obtained for ensemble learning. It
states that the mean-square error of the ensemble estimator is guaranteed to be
less than or equal to the average mean-square error of the component estimators;
the details of this will be expanded upon later.
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1.1 Negative Correlation Learning

After this initial branching, both explicit and implicit methods can be further
divided as manipulating either: the initial weights of the networks, the network
architectures, the training data, or the learning algorithm. Some authors, tak-
ing the latter approach, have found benefit from using a regularisation term in
the learning. Negative Correlation1 (NC) Learning [5], an extension of Rosen’s
decorrelated networks [11], is an ensemble learning technique which incorporates
such a regularisation term into the backpropagation error function. The regular-
isation term is meant to quantify the amount of error correlation, so it can be
minimised explicitly during training—as such, it is an explicit diversity method.
In NC the error εi of network i is:

εi =
1
2
(fi − d)2 + λpi (1)

where fi is the output of the ith network on a single input pattern, d is the
target, and λ is a weighting parameter on the penalty function pi. Strictly, this
notation should include input, so fi(n) and d(n) for the nth input pattern, but we
omit this for notational simplicity. The λ parameter controls a trade-off between
objective and penalty functions; when λ = 0, the penalty function is removed
and we have an ensemble with each network training independently of the others,
using plain backpropagation. NC has a penalty function of the form:

pi = (fi − f̄)
∑
j �=i

(fj − f̄) (2)

where f̄ is the average output of the whole ensemble of M networks at the pre-
vious timestep, defined as f̄ = 1

M

∑i=M
i=1 fi. NC has seen a number of empirical

successes [5,6,7], consistently outperforming a simple ensemble system, but so
far has had very little formal analysis to explain why it works when it does; this
leads naturally to our first question.

1.2 Why Does the Algorithm Work?

The mean-square error (MSE) of an ensemble system can be decomposed into
bias, variance and covariance components [12]. The strength parameter λ in
NC provides a way of controlling the trade-off between these three components:
a higher value encourages a decrease in covariance, as has been demonstrated
empirically [5]. However we do not yet have a clear picture of the exact dynamics
of the algorithm.

When λ = 1, we have a special situation. This was described by Liu [5] to
show a theoretical justification for NC-Learning. It should be noted that, in the
calculation of the derivative, Liu has: “... made use of the assumption that the
output of the ensemble f̄ has constant value with respect to fi” [5, p.29].
1 So-called because it has demonstrated on a number of occasions that it is able to

generate estimators with negatively correlated errors.
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We have:

εi =
1
2
(fi − d)2 + λ(fi − f̄)

∑
j �=i

(fj − f̄)

∂εi

∂fi
= fi − d + λ

∑
j �=i

(fj − f̄)

= fi − d − λ(fi − f̄)
= f̄ − d

However, although the assumption of constant f̄ is used, so is the property
that

∑
j �=i(fj − f̄) = −(fi − f̄), the sum of deviations around a mean is equal

to zero; obviously the sum of deviations around a constant does not have this
property. Using this apparently contradictory assumption, and the fact that the
overall ensemble error function is defined as ε = 1

2 (f̄ − d)2, it was stated:

∂ε

∂fi
=

1
M

[ ∂εi

∂fi

]
(3)

showing that the gradient of the individual network error is directly proportional
to the gradient of the ensemble error. Though this is obviously a useful property,
the justification for the assumption is unclear. To understand this further, as
with all algorithms, it would be useful to first understand a framework into
which NC can fit. What is the theoretical grounding of NC? What are other
similar algorithms? In the following sections we address these questions.

2 Formalising NC-Learning

In this section we show how NC can be related to the work by Krogh and
Vedelsby [4], which showed the ensemble error could be broken down into two
terms, one of which is dependent on the correlations between network errors.

2.1 NC Uses the Ambiguity Decomposition

Note that the penalty function is actually a sum of pairwise correlations; if we
remember again that the MSE of an ensemble decomposes into bias plus variance
plus covariance [12], then including some measure of correlation to be minimised
seems like an intuitive thing to do (first noted by Rosen [11]). However this
intuition is not enough. We note that the penalty function can be rearranged to:

pi = −(fi − f̄)2 (4)

which is again due to the property that the sum of deviations around a mean is
equal to zero. This rearrangement is only possible if we remove Liu’s assumption
([5], p29) of constant f̄ . As can be seen, each network minimises its penalty
function by moving its output away from the ensemble output, the mean response
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of all the other networks. So why should increasing distance from the mean, or
optimising equation (1), necessarily lead to a decrease in ensemble error? An
examination of the proof by Krogh and Vedelsby can answer this question, and
also raise some new questions on the setting for the λ parameter. Their work
showed that the following statement about ensemble error was true:

(f̄ − d)2 =
∑

i

wi(fi − d)2 −
∑

i

wi(fi − f̄)2 (5)

This stems from a number of definitions, one of which is the ambiguity of a
single member of the ensemble:

vi = (fi − f̄)2 (6)

Remembering that the individual networks in NC-learning minimise the
penalty function, and looking at equations (4) and (6) we can see pi = −vi

and so the networks are in fact maximising this ambiguity term, equation (6).
This in turn of course affects the total ensemble error. Please note this result
for NC only holds if the weightings on the networks are all 1

M , as equation (2)
cannot be rearranged to (4) without this constraint.

To understand this further we take equation (5), multiply through by 1
2 and

rearrange slightly assuming our ensemble is uniformly weighted, we then have:

1
2
(f̄ − d)2 =

1
M

∑
i

[
1
2
(fi − d)2 − 1

2
(fi − f̄)2

]
(7)

We see that the mean squared error of an ensemble can be decomposed into
a weighted summation, where the ith term is the backpropagation error function
plus the NC-Learning penalty function.

Now, since we have removed the constraint of assuming constant f̄ to allow
a link to the ambiguity decomposition, it seems more rigorous to differentiate
the network error again without this assumption. What happens in this case?
We have a partial derivative:

∂εi

∂fi
= fi − d − λ

[
2
M − 1

M
(fi − f̄)

]
(8)

where M is the number of networks in the ensemble. Keeping the assumption of
constant f̄ causes this term 2M−1

M to disappear. However, it does seem sensible
to retain this, as it takes account of the number of networks. In all of Liu’s
experiments [5,6,7], the λ parameter was thought to be problem dependent.
Now we understand that it has a deterministic component, this 2M−1

M . To avoid
confusion, from this point on, we shall refer to the λ parameter in the following
context, where γ is still a problem-dependent scaling parameter:

λ = γ

[
2
M − 1

M

]
(9)

In understanding the role of the strength parameter a natural question to
ask is, what are the bounds?
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2.2 What Are the Bounds of λ and γ?

As with any problem-dependent parameter, we would like to know bounds, to
allow us to set it sensibly. Liu stated that the bounds of λ should be [0, 1], based
on the following calculation:

∂εi

∂fi
= fi − d + λ

∑
j �=i

(fj − f̄)

= fi − d − λ(fi − f̄)
= (1 − λ)(fi − d) + λ(f̄ − d)

He states: ”the value of parameter λ lies inside the range 0 ≤ λ ≤ 1 so that
both (1−λ) and λ have non-negative values” ([5], p29). However this justification
is questionable, and again here we see the assumption of constant f̄ is violated.

We have to ask therefore, why would it be a problem if (1 − λ) and λ were
negative values? Maybe the bounds of λ should not be [0, 1]. How can we deter-
mine what the true bounds should be? We can simply take the second partial
derivative of εi with respect to fi:

∂2εi

∂f2
i

= 1 − λ(1 − 1
M

)

If the second derivative becomes negative, then our function contains only
local maxima or points of inflexion, and we have lost any useful gradient in-
formation from our original objective function. Rearranging this, to maintain a
positive second derivative, we have an upper bound for λ and also γ:

λupper =
M

M − 1
γupper =

M2

2(M − 1)2

Figure 1 plots λupper and the equivalent γupper for different numbers of net-
works. We see that in the infinite networks case, λupper converges to 1, and
γupper converges to 0.5. It should be noted that with a smaller number of net-
works λupper is greater than 1.

2.3 An Empirical Study

With our new understanding of the bounds of the parameter in NC, we now
perform an empirical evaluation, and show that it is critical to consider values
for the strength parameter outside the originally specified range.

Table 1 shows the classification error rates and standard errors of two em-
pirical tests, on the Wisconsin breast cancer data from the UCI repository (699
patterns), and the heart disease Statlog dataset (270 patterns). An ensemble
consisting of two networks, each with five hidden nodes, was trained for 2000 it-
erations with and without NC. We use 5-fold cross-validation and 40 trials from
uniform random weights in [−0.5, 0.5] for each setup; in total 200 trials were
conducted for each experimental configuration. It should be noted that with 2
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Fig. 1. The Upper bound on γ and λ

Table 1. Mean classification error rates (200 trials) using NC on two UCI datasets

γ = 0 γ = 0.5 γ = 1
Breast cancer 0.0408 (0.0006) 0.0410 (0.0007) 0.0383 (0.0009)
Heart disease 0.2022 (0.0028) 0.1995 (0.0027) 0.1802 (0.0020)

networks, γ = λ. The γ values tested are those considered in the original work
on NC: 0.0, 0.5 and 1.0. When γ was set appropriately, results on the heart data
showed NC significantly better than a simple ensemble (equivalent to γ = 0) at
α = 0.05 on a two-tailed t-test. On the breast cancer data, although the mean
was lower, it was not statistically significant.

Figure 2 shows the results of repeating our experiment, but illustrating the
full range of the strength parameter. Mean error rate over the 200 trials is
plotted, and 95% confidence intervals shown. We see that performance on the
breast cancer data can be improved significantly by considering the upper bounds
beyond those previously specified; on the heart disease data (not shown due to
space considerations), stable performance was observed beyond γ = 1.

As a further measure of comparison, we calculated the percentage reduc-
tion in the mean error rate, in relation to when γ = 0, equivalent to a simple
backpropagation ensemble. On the breast cancer data, using γ = 1 gave a 6%
reduction, but using the optimum value at γ = 1.7 gave a 21% reduction.

We have shown a significant performance improvement by reconsidering the
bounds of the strength parameters. It should be noted that, even though the
theoretical upper bound is known, in practise it seems error can rise rapidly
long before this bound is reached. On the breast cancer data, error became
uncontrollable beyond γ = 1.8, and on the heart disease data at γ = 1.45; it
remains to be seen if it is possible to empirically characterise when this rapid
increase will occur.

We know from figure 1 that the upper bound reduces as we add more net-
works; from this it is reasonable to assume that the optimal value would follow
a similar trend. But why? What role does γ play?
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Fig. 2. Breast cancer dataset results

3 What Is the Relation of NC to Bias and Variance?

In this section we ask the question, how does NC relate to the bias-variance
decomposition? Can this tell us what role the strength parameter plays?

The second term on the right handside of equation 5 is the ensemble ambi-
guity ; this is maximised when training an ensemble with NC. When wi = 1

M for
all i, it can be shown:

−E
{∑

i

wi(fi − f̄)2
}

= E
{ 1

M

∑
i

(fi − f̄)
∑
j �=i

(fj − f̄)
}

=
1
M

∑
i

∑
j �=i

E
{

(fi − f̄)(fj − f̄)
}

The expected value of the ensemble ambiguity term is an approximation to
the average covariance of the ensemble members. It is an approximation be-
cause with a finite number of networks, f̄ �= E{f}, and also because the sum
is multiplied by 1

M instead of 1
M(M−1) . We can see that when we are increasing

ambiguity, we are reducing this covariance term. When training an ensemble
with NC, we use the γ parameter, directly attempting to reduce covariance by
over-emphasising this component. A larger γ parameter will be needed when our
approximation is not very good: this is will most likely occur when we have a
small number of networks, but it could also be due to noise in the training data.
It is hoped that with further analysis we will be able to mathematically charac-
terise this, and provide further guidelines for setting the strength parameter.

4 Viewing the Ensemble as a Single Estimator

In this section we briefly show how NC-Learning works on a search landscape
that, using the λ parameter, can be smoothly scaled between that of a fully par-
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allel ensemble system, and a single large neural network. Regard the architecture
in figure 3.

This is an ensemble of three networks, each with three hidden nodes, using a
simple average combination rule for the ensemble output. We desire to update
the weight, wqi, marked in bold—this is one of the output layer weights for the
ith network (connected to the qth hidden node). If we use NC-Learning, we need
the derivative of the error εi with respect to wqi. If λ = 0, we have:

∂εi

∂wqi
=

[
(fi − d)

]
·
[
fi(1 − fi)

]
·
[
hq

]
(10)

And if λ = 1, we have:

∂εi

∂wqi
=

[
(f̄ − d)

]
·
[
fi(1 − fi)

]
·
[
hq

]
(11)

If we now consider the ensemble architecture as one large network (with fixed
output layer weights), then our output node is marked in dark gray, and has a
linear output function f̄ :

f̄ = ai (12)

and its activation function ai:

ai =
1
M

∑
i

fi (13)

The error of this large network on a single pattern is:

ε =
1
2
(f̄ − d)2 (14)

Now, as before, we find the derivative of ε with respect to the weight wqi:

∂ε

∂wqi
=

∂ε

∂f̄

∂f̄

∂ai

∂ai

∂fi

∂fi

∂ai

∂ai

∂wqi
(15)

∂ε

∂wq
=

[
(f̄ − d))

]
·
[
1
]

·
[ 1
M

]
·
[
fi(1 − fi)

]
·
[
hq

]
(16)
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The only difference from equation (11) is the 1
M . All the minima are in the

same locations, but the landscape is M times shallower—the effect of which
could be duplicated with a smaller learning rate in the update rule. When we
change λ, we can scale smoothly between a single network with a linear output
function, and a parallel ensemble system.

5 Related Work: The Ambiguity Family

In this section we briefly review some other techniques which have exploited
the ambiguity decomposition in some way, either to create or combine a set of
predictors. In the last few years, the ambiguity decomposition has quietly been
utilised in almost every aspect of ensemble construction. Krogh and Vedelsby
themselves developed an active learning scheme [4], based on the method of
query by committee, selecting patterns to train on that had a large ambiguity;
this showed significant improvements over passive learning in approximating a
square wave function.

[8] selected feature subsets for the ensemble members to train on, using a ge-
netic algorithm with an ambiguity-based fitness function; this showed gains over
Bagging and Adaboost on several classification datasets from the UCI reposi-
tory. A precursor to this work was Opitz and Shavlik’s Addemup algorithm [9],
which used the same fitness function to optimise the network topologies com-
posing the ensemble. Interestingly, both these GA-based approaches also used a
strength parameter, λ, to vary the emphasis on diversity. The difference between
their work and NC is that NC incorporates ambiguity into the backpropagation
weight updates, while Addemup trains with standard backpropagation, then se-
lects networks with a good error diversity.

The original ambiguity paper [4] also used an estimate of ambiguity to opti-
mise the ensemble combination weights, showing in some cases it is optimal to
set a network weight to zero—essentially removing it from the ensemble. In [1]
bootstrap resamples of training data are used to estimate ambiguity, in order
to approximate the optimal training time; this minimises the overall ensemble
generalisation error.

We can see that ambiguity has been utilised in many ways: pattern selec-
tion [4], feature selection [8], optimising the topologies [9] of networks in the
ensemble, optimising the combination function [4], and also optimising train-
ing time [1]. NC fits neatly into the gap as the first technique to directly use
ambiguity for network weight updates.

6 Conclusions

We analyzed an ensemble technique, Negative Correlation Learning[5], that ex-
tended from Rosen[11], and developed in the evolutionary computation litera-
ture. We show a link to the bias-variance decomposition, and hypothesise that
NC succeeds by rescaling an estimate of the ensemble covariance. This formal-
isation of NC is a step towards placing it in a solid statistical framework. In
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showing how NC uses its strength parameter to scale smoothly between an en-
semble system and a single network, it serves to partially unify the concepts of
training an ensemble and training a single estimator.

In addition this work highlights the need for collaboration between commu-
nities, as a technique grown in the artificial intelligence and evolutionary com-
putation community can be of interest to the pattern recognition community.
Several other works on artificial speciation[3] and multi-objective evolutionary
algorithms[2] are highly relevant, and are slowly formulating a solid statistical
grounding, and it is hoped future cross-disciplinary links can be fostered.
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